

Welcome to Reflexible’s documentation!

Contents:

	Introduction
	A brief description of the package

	Getting reflexible

	Build and test

	Installation

	Quick install

	Getting started
	A quick overview of FLEXPART data

	Converting FLEXPART output to netCDF4 format

	Basic reflexible functionality

	Working with rflexible in depth

	Adding Trajectories

	The reflexible API

	The mapping module
	A brief description of the module

	The mapping API

Indices and tables

	Index

	Module Index

	Search Page

Introduction

reflexible is an open source Python package to work with Lagrangian
Particle Dispersion Model output. Currently it is built for FLEXPART [http://transport.nilu.no/flexpart] but future versions will include
greater generality.

Contributions and collaboration are welcome. The code is hosted at
github and the documentation is hosted at readthedocs. reflexible is
licensed under Creative Commons.

Current development activities are focused on improved generality and
handling of FLEXPART output in all possible run configurations, with
and without deposition, forward, backward, or otherwise.

A brief description of the package

The reflexible package is developed to work with output from the Lagrangian
Particle Dispersion Model, FLEXPART [https://www.flexpart.eu/] .

The module relies extensively on the users knowledge of FLEXPART data in
general, and thus one is strongly encouraged to read the
users guide [http://zardoz.nilu.no/~andreas/flexpart/flexpart8.pdf]
which explains some basics regarding the model.

Note If you are interested in contributing functionality for other FLEXPART
versions, please contact me at jfburkhart@gmail.com

Purpose

The purpose of the module is to make the creation of some standard plotting
products as easy as possible. However, due to the complex nature of FLEXPART
output, this isn’t so easy! Regardless, I hope you find some of the
functionality helpful. The most critical functions are readheader and readgrid
which will at least get the data into Python so you can play with it as you are
most comfortable.

Warning

You are entering the domain of a scientist trying to write code. Constructive
input is sought, but don’t complain if something breaks!

Getting reflexible

The code is available to the public at github [https://github.com/spectraphilic/reflexible]. You can easily clone
the git repository:

$ git clone https://github.com/spectraphilic/reflexible.git

Install the requirements:

$ conda install –file requirements.txt -c conda-forge

Build and test

It should simply be a matter of changing the repo directory and running
setup.py:

$ python setup.py build_ext --inplace

and then run the tests with:

$ pytest

If the test suite pass, you can proceed with installation.

Installation

It should simply be a matter of running:

$ python setup.py install

NOTE It is only planned to support Python 3.

Quick install

You may also want to install the package in one single shot (no testing
though!) with:

$ pip install git+https://github.com/spectraphilic/reflexible.git

And hopefully everything works!.

Getting started

A quick overview of FLEXPART data

reflexible was originally developed for working with FLEXPART V8.x
which has some fairly new features to how the output data is
created. The latest version of FLEXPART also has functionality for
saving directly to Netcdf. The ability to read this data directly is
forthcoming, but for now reflexible still only works with the raw
unformatted binary Fortran data FLEXPART has traditionally used for
output. See the documents for information regarding FLEXPART [http://transport.nilu.no/flexpart] .

A users guide [http://zardoz.nilu.no/~andreas/flexpart/flexpart8.pdf] for
FLEXPART is available which explains the model output.

Note If you are interested in contributing functionality for other
FLEXPART versions, please contact me.

reflexible was originally released as ‘pflexpart’, but as the goal is
to be more generic, the package was renamed. The current release is
still focused on FLEXPART, but some generalizations are starting to
make their way into the code base.

reflexible is undergoing constant modifications and is not
particularly stable or backward compatible code. I am trying to move
in the right direction, and have moved the code now to
github.org. If you are interested in contributing, feel free to
contact me: John F. Burkhart

Example data

Several example simulations are available for testing. The simulations contain a
simple backward run case and a forward case, and are suitable for testing some of the
unique functions of reflexible for analysis and creation of the
retroplumes.

The data is distributed with the repository:

$ ls reflexible/reflexible/uio_examples

Converting FLEXPART output to netCDF4 format

Reflexible is using a netCDF4 internally for doing its analysis and
plotting duties. Not all the example data sets contain netcdf output,
and several FLEXPART users are not yet using this functionality.
This section demonstrates how to convert the
FLEXPART output to netCDF4 format. In order to do that the
create_ncfile script will be invoked. This script is copied into a
directory in your path when reflexible is installed, so you should not
worry about copying it manually.

The example data we will use is in a directory named uio_examplesBwd1_V9.02. It
contains the result of processing a simple backward run case with
FLEXPART. Next we can execute the fprun script:

$ fprun Bwd1_V9.02/pathnames
UserWarning: NetCDF4 files not found in output directory 'Bwd1_V9.02/outputs'.
You can always generate them from data there with the `create_ncfile` command line utility.
Read b'FLEXPART V9.0' Header: Bwd1_V9.02/outputs/header
Flexpart('Bwd1_V9.02/pathnames', nested=False)

note that you pass the pathnames of a FLEXPART run. The pathnames
file has a simple structure. For example, in our case it goes like
this:

/site/opt/flexpart/9.02/examples/Bwd1/options/
./outputs/

/site/opt/flexpart/WIND_FIELDS/AVAILABLE_ECMWF_EI_fields_global
==

So, basically in the first line indicates the <options> directory for
the FLEXPART run, whereas the second line specifies the <output>
directory. With this, you can easily mix and match different <options>
and <output> directories for your analysis.

If we want to select the nested data instead, we can look instead at the
Fwd1_V9.02/pathnames simulation with the -n flag:

$ fprun -n Fwd2_V9.02/pathnames
UserWarning: NetCDF4 files not found in output directory 'Fwd2_V9.02/outputs'.
You can always generate them from data there with the `create_ncfile` command line utility.
Read b'FLEXPART V8.2' Header: Fwd2_V9.02/outputs/header_nest
Flexpart('Fwd2_V9.02/', nested=True)

And if you want to get some info on the COMMANDS file:

$ fprun -n -C Fwd2_V9.02/pathnames
Read b'FLEXPART V8.2' Header: Fwd2_V9.02/outputs/header_nest
Flexpart('Fwd2_V9.02/pathnames', nested=True)
Command: OrderedDict([('AVG_CNC_INT', 3600), ('AVG_CNC_TAVG', 3600), ('CNC_SAMP_TIME', 300), ('CTL', 3.0), ('IFINE', 4), ('IFLUX', 0), ('IND_RECEPTOR', 1), ('IND_SOURCE', 1), ('IOUT', 5), ('IPIN', 0), ('IPOUT', 0), ('LAGESPECTRA', 0), ('LCONVECTION', 0), ('LINIT_COND', 2), ('LSUBGRID', 1), ('MDOMAINFILL', 0), ('MQUASILAG', 0), ('NESTED_OUTPUT', 1), ('OUTPUTFOREACHRELEASE', 0), ('SIM_DIR', 1), ('SIM_END', ['20070122', '180000']), ('SIM_START', ['20070121', '090000']), ('SYNC', 300), ('T_PARTSPLIT', 999999999)])

You can get more info on the supported flags by passing the -h flag to
the fprun command line utility:

$ fprun -h
usage: fprun [-h] [-n] [-C] [-R] [-S] [-H HEADER_KEY] [-K] [pathnames]

positional arguments:
 pathnames The Flexpart pathnames file stating where options and
 output are. If you pass a dir, a 'pathnames' file will
 be appended automatically. If not found yet, a FP
 output dir is assumed.

optional arguments:
 -h, --help show this help message and exit
 -n, --nested Use a nested output.
 -C, --command Print the COMMAND contents.
 -R, --releases Print the RELEASES contents.
 -S, --species Print the SPECIES contents.
 -H HEADER_KEY, --header-key HEADER_KEY
 Print the contents of H[HEADER_KEY].
 -K, --header-keys Print all the HEADER keys.

Reading data out of a FLEXPART run

Newer versions of FLEXPART can generate convenient NetCDF4 files as output,
so let’s have a quick glimpse on how you can access the different data on it.

Note In case you have a FLEXPART output that is not in NetCDF4 format, you
can always make use the create_ncfile command line utility.

Open the file and print meta-information for the run:

In [1]: from netCDF4 import Dataset

In [2]: rootgrp = Dataset('./Fwd1_V9.02/outputs/grid_conc_2007012190000_nest.nc', 'r')

In [3]: print(rootgrp)
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF4 data model, file format HDF5):
 Conventions: CF-1.6
 title: FLEXPART model output
 institution: NILU
 source: V8 model output
 history: 2016-10-28 16:43 NA created by faltet on faltet-Latitude-E6430
 references: Stohl et al., Atmos. Chem. Phys., 2005, doi:10.5194/acp-5-2461-200
 outlon0: 1.0
 outlat0: 39.5
 dxout: 0.019999999553
 dyout: 0.019999999553
 ldirect: 1
 ibdate: 20070121
 ibtime: 100000
 iedate: 20070122
 ietime: 180000
 loutstep: 3600
 loutaver: 3600
 loutsample: 300
 lsubgrid: 1
 lconvection: 0
 ind_source: 1
 ind_receptor: 1
 itsplit: 999999999
 linit_cond: 2
 lsynctime: 300
 ctl: 3.0
 ifine: 4
 iout: 5
 ipout: 0
 lagespectra: 0
 ipin: 0
 ioutputforeachrelease: 0
 iflux: 0
 mdomainfill: 0
 mquasilag: 0
 nested_output: 1
 surf_only: 0
 dimensions(sizes): time(33), longitude(220), latitude(220), height(1), numspec(1), pointspec(1), nageclass(1), nchar(45), numpoint(1)
 variables(dimensions): int32 time(time), float32 longitude(longitude), float32 latitude(latitude), float32 height(height), <class 'str'> RELCOM(numpoint), float32 RELLNG1(numpoint), float32 RELLNG2(numpoint), float32 RELLAT1(numpoint), float32 RELLAT2(numpoint), float32 RELZZ1(numpoint), float32 RELZZ2(numpoint), int32 RELKINDZ(numpoint), int32 RELSTART(numpoint), int32 RELEND(numpoint), int32 RELPART(numpoint), float32 RELXMASS(numspec,numpoint), int32 LAGE(nageclass), int32 ORO(latitude,longitude), float32 spec001_mr(nageclass,pointspec,time,height,latitude,longitude), float32 WD_spec001(nageclass,pointspec,time,latitude,longitude), float32 DD_spec001(nageclass,pointspec,time,latitude,longitude)
 groups:

We can get the info for a specific attribute just by referencing it like this:

In [4]: print(rootgrp.loutstep)
3600

We can have a look at the different dimensions and variables in the file:

In [5]: print(rootgrp.dimensions)
OrderedDict([('time', <class 'netCDF4._netCDF4.Dimension'> (unlimited): name = 'time', size = 33
), ('longitude', <class 'netCDF4._netCDF4.Dimension'>: name = 'longitude', size = 220
), ('latitude', <class 'netCDF4._netCDF4.Dimension'>: name = 'latitude', size = 220
), ('height', <class 'netCDF4._netCDF4.Dimension'>: name = 'height', size = 1
), ('numspec', <class 'netCDF4._netCDF4.Dimension'>: name = 'numspec', size = 1
), ('pointspec', <class 'netCDF4._netCDF4.Dimension'>: name = 'pointspec', size = 1
), ('nageclass', <class 'netCDF4._netCDF4.Dimension'>: name = 'nageclass', size = 1
), ('nchar', <class 'netCDF4._netCDF4.Dimension'>: name = 'nchar', size = 45
), ('numpoint', <class 'netCDF4._netCDF4.Dimension'>: name = 'numpoint', size = 1
)])

In [6]: rootgrp.variables.keys()
Out[11]: odict_keys(['time', 'longitude', 'latitude', 'height', 'RELCOM', 'RELLNG1', 'RELLNG2', 'RELLAT1', 'RELLAT2', 'RELZZ1', 'RELZZ2', 'RELKINDZ', 'RELSTART', 'RELEND', 'RELPART', 'RELXMASS', 'LAGE', 'ORO', 'spec001_mr'])

The netCDF4 Python wrappers allows to easily slice and dice variables:

In [15]: longitude = rootgrp.variables['longitude']

In [16]: print(longitude)
<class 'netCDF4._netCDF4.Variable'>
float32 longitude(longitude)
 long_name: longitude in degree east
 axis: Lon
 units: degrees_east
 standard_name: grid_longitude
 description: grid cell centers
unlimited dimensions:
current shape = (220,)
filling on, default _FillValue of 9.969209968386869e+36 used

We see that ‘longitude’ is a unidimensional variable with shape (220,).
Let’s read just the 10 first elements:

In [20]: longitude[:10]
Out[20]:
array([1.00999999, 1.02999997, 1.04999995, 1.07000005, 1.09000003,
 1.11000001, 1.13 , 1.14999998, 1.16999996, 1.18999994], dtype=float32)

As only the 10 first elements are brought into memory, that permits
to reduce your memory needs for your analysis.

Also, what you get from slicing netCDF4 variables are always NumPy arrays:

In [21]: type(longitude[:10])
Out[21]: numpy.ndarray

which, besides of being memory-efficient, they are what you normally
use in your analysis tasks.

Also, each variable can have attached different attributes meant to
add more information about what they are about:

In [23]: longitude.ncattrs()
Out[23]: ['long_name', 'axis', 'units', 'standard_name', 'description']

In [24]: longitude.long_name
Out[24]: u'longitude in degree east'

In [25]: longitude.units
Out[25]: u'degrees_east'

That’s is basically all you need to know to access the on-disk data.
Feel free to play a bit more with the netCDF4 interface, because you
will find it very convenient when combined with reflexible.

Basic reflexible functionality

Once you have checked out the code and have a sufficient FLEXPART
dataset to work with you can begin to use the module. The first step
is to load the package. Depending on how you checked out the code, you
can accomplish this in a few different way, but the preferred is as
follows:

In [1]: import reflexible as rf

The next step is to create the accessor to the FLEXPART run. In this first
example we’ll work with a Forward simulation. This is easier, conceptually
and a common FLEXPART use case. You pass the location of the ‘pathnames’ file to the Flexpart
constructor:

In [2]: fprun = rf.Flexpart("Fwd2_V9.02/pathnames")

In [3]: type(fprun)
Out[3]: reflexible.flexpart.Flexpart

So, fprun is an instance of the Flexpart class that allows you to
easily access different parts of the FLEXPART run. For example, we can
access the COMMAND like this:

In [4]: fprun.Command
Out[4]:
OrderedDict([('AVG_CNC_INT', 3600),
 ('AVG_CNC_TAVG', 3600),
 ('CNC_SAMP_TIME', 300),
 ('CTL', 3.0),
 ('IFINE', 4),
 ('IFLUX', 0),
 ('IND_RECEPTOR', 1),
 ('IND_SOURCE', 1),
 ('IOUT', 5),
 ('IPIN', 0),
 ('IPOUT', 0),
 ('LAGESPECTRA', 0),
 ('LCONVECTION', 0),
 ('LINIT_COND', 2),
 ('LSUBGRID', 1),
 ('MDOMAINFILL', 0),
 ('MQUASILAG', 0),
 ('NESTED_OUTPUT', 1),
 ('OUTPUTFOREACHRELEASE', 0),
 ('SIM_DIR', 1),
 ('SIM_END', ['20070122', '180000']),
 ('SIM_START', ['20070121', '090000']),
 ('SYNC', 300),
 ('T_PARTSPLIT', 999999999)])

the SPECIES:

In [5]: fprun.Species
Out[5]:
defaultdict(list,
 {'decay': [-999.9],
 'dquer': [-9.9],
 'dryvel': [-9.99],
 'dsigma': [-9.9],
 'f0': [-9.9],
 'henry': [-9.9],
 'kao': [-99.99],
 'ohreact': [-9.9e-09],
 'reldiff': [-9.9],
 'spec_ass': [-9],
 'weightmolar': [350.0],
 'weta': [-9.9e-09],
 'wetb': [-9.9e-09]})

But perhaps the most important accessor is the Header:

In [8]: H = fprun.Header

In [9]: type(H)
Out[9]: reflexible.data_structures.Header

Now we have a variable ‘H’ which has all the information about the
run that is available from the header file. This ‘Header’ is a class
instance, so the first step may be to explore some of the attributes:

In [12]: print(H.keys())
['C', 'FD', 'Heightnn', 'ORO', 'absolute_path', 'alt_unit', 'area', 'available_dates', 'available_dates_dt', 'direction', 'dxout', 'dyout', 'fill_grids', 'fp_path', 'ibdate', 'ibtime', 'iedate', 'ietime', 'ind_receptor', 'ind_source', 'iout', 'ireleaseend', 'ireleasestart', 'latitude', 'lconvection', 'ldirect', 'longitude', 'loutaver', 'loutsample', 'loutstep', 'lsubgrid', 'nageclass', 'nc', 'ncfile', 'nested', 'nspec', 'numageclasses', 'numpoint', 'numpointspec', 'numxgrid', 'numygrid', 'numzgrid', 'options', 'outheight', 'outlat0', 'outlon0', 'output_unit', 'pointspec', 'releaseend', 'releasestart', 'releasetimes', 'species', 'zpoint1', 'zpoint2']

Working with rflexible in depth

Assuming the above steps worked out, then we can proceed to understand
the tools in a bit more detail.

Okay, let’s take a look at the example code above line by line. The
first line imports the module, giving it a namespace “rf” – this is
the preferred approach.

The next line creates a “fprun” instance of Flexpart,
by passing the pathnames of a FLEXPART run.:

In [24]: fprun = rf.Flexpart("Fwd2_V9.02/pathnames")

and from there, we can easily have access to the Header container:

In [25]: H = fprun.Header

The Header is central to reflexible. This contains much
information about the FLEXPART run, and enable plotting, labeling of
plots, looking up dates of runs, coordinates for mapping, etc. All
this information is contained in the Header. See for example:

In [27]: print(dir(H))
['C', 'FD', 'Heightnn', 'ORO', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_gridarea', 'absolute_path', 'add_trajectory', 'alt_unit', 'area', 'available_dates', 'available_dates_dt', 'direction', 'dxout', 'dyout', 'fill_grids', 'fp_path', 'ibdate', 'ibtime', 'iedate', 'ietime', 'ind_receptor', 'ind_source', 'iout', 'ireleaseend', 'ireleasestart', 'keys', 'latitude', 'lconvection', 'ldirect', 'longitude', 'loutaver', 'loutsample', 'loutstep', 'lsubgrid', 'nageclass', 'nc', 'ncfile', 'nested', 'nspec', 'numageclasses', 'numpoint', 'numpointspec', 'numxgrid', 'numygrid', 'numzgrid', 'options', 'outheight', 'outlat0', 'outlon0', 'output_unit', 'pointspec', 'releaseend', 'releasestart', 'releasetimes', 'species', 'zpoint1', 'zpoint2']

This will show you all the attributes associated with the Header.

H is now an object in your workspace. Using Ipython you can explore
the methods and attributes of H.

Data Containers: H.FD and H.C

There are a couple attributes of the Header that contain data. These are important
to understand in order to work with reflexible.

Reasonably, you should now want to read in some of the data from your
run. At this point, the Header or, H variable, should now have an attribute
‘FD’ which is again a dictionary of the FLEXPART grids (think ‘Flexpart Data’):

In [13]: H.FD
Out[13]: <reflexible.data_structures.FD at 0x7f83bc4c5898>

In [15]: H.FD.keys()[:3] # for only the 3 first entries
Out[15]: [(0, '20070121100000'), (0, '20070121110000'), (0, '20070121120000')]

Look at the keys of the dictionary to see what information is
stored. The actual data is keyed by tuples: (nspec, datestr) where
nspec is the species number and datestr is a YYYYMMDDHHMMSS string for
the grid timestep:

In [16]: fd = H.FD[(0, '20070121100000')]

In [17]: fd.data_cube.shape
Out[18]: (60, 40, 1, 1, 1)

And we can see what the dimensions are as they relate to the shape:

In [19]: fd.data_cube.dims
Out[20]: ('longitude', 'latitude', 'height', 'pointspec', 'nageclass')

Some information about the individual data for the timestep is provided:

In [33]: fd.keys()
Out[33]:
['data_cube',
 'gridfile',
 'itime',
 'timestamp',
 'species',
 'rel_i',
 'spec_i',
 'dry',
 'wet',
 'slabs',
 'shape',
 'max',
 'min']

These are available as attributes of the flexpart data class:

In [97]: fd.timestamp
Out[97]: datetime.datetime(2007, 1, 21, 10, 0)

In [102]: fd.species
Out[102]: ['TRACER']

There is a second attribute, H.C, that is meant to provide ‘Cumulative` sensitivity at
each time step, as well as some cumulative values such as a total_column attribute.

H.C is similar to the H.FD object described above, but
contains the Cumulative sensitivity at each time step, so you can use
it for plotting retroplumes.

It is important to understand the differences between H.FD and H.C
while working with reflexible. If we look closely at the keys of
H.FD:

In [29]: H.FD.keys()[:3]
Out[29]: [(0, '20070121100000'), (0, '20070121110000'), (0, '20070121120000')]

You’ll see that the dictionary is primary keyed by a set of tuples.
These tuples represent (s, date), where s is the specied ID and
date is the date of a grid in FLEXPART.

However, if we look at the keys
of the H.C dictionary:

In [30]: H.C.keys()[:3]
Out[30]: [(0, 0)]

We see only tuples, now keyed by (s, rel_id), where s is still the
species ID, but rel_id is the release ID. These release IDs correspond
to the times in H.releasetimes which is a list of the release times.
In a forward run, this will be the same. However, in a backward run, there
will be differences.

Each tuple is a key to another dictionary, that contains the
data. Currently there are differences between the way the data is
stored in H.FD and in H.C, but future versions are working to make
these two data stores common.

So we know now H.C is keyed by (s,k) where s is an integer for the
species #, and k is an integer for the release id.

Working with Backward Simulations

The biggest difference for the H.C object is when you have a backward
simulation. First, for a backward simulation, the attribute will not exist
unless you explicitly call for it:

In [135]: bwrun = rf.Flexpart('Bwd1_V9.02/pathnames')
/Data/johnbur/.conda/envs/shyft/lib/python3.6/site-packages/reflexible-0.5.0-py3.6.egg/reflexible/flexpart.py:45: UserWarning: NetCDF4 files not found in output directory 'Bwd1_V9.02/outputs'. You can always generate them from data there with the `create_ncfile` command line utility.
 self.fp_output))
Read b'FLEXPART V9.0' Header: Bwd1_V9.02/outputs/header

In [136]: bwH = bwrun.Header

In [137]: bwH.C

KeyError Traceback (most recent call last)
<ipython-input-137-71db37c7653c> in <module>()
----> 1 bwH.C

~/.conda/envs/shyft/lib/python3.6/site-packages/reflexible-0.5.0-py3.6.egg/reflexible/conv2netcdf4/legacy_structures.py in __getattr__(self, attr)
 178 if attr == "__getstate__":
 179 return lambda: None
--> 180 return self[attr]
 181
 182 def __setattr__(self, attr, value):

KeyError: 'C'

Because reading all the data for a backward run is time and memory intensive, it
will not be done automatically. Instead, you need to explicitly ask for it:

In [138]: bwH.fill_backward()
getting grid for: ['20070121090000', '20070121100000', '20070121110000', '20070121120000', '20070121130000', '20070121140000', '20070121150000', '20070121160000', '20070121170000', '20070121180000', '20070121190000', '20070121200000', '20070121210000', '20070121220000', '20070121230000', '20070122000000', '20070122010000', '20070122020000', '20070122030000', '20070122040000', '20070122050000', '20070122060000', '20070122070000', '20070122080000', '20070122090000', '20070122100000', '20070122110000', '20070122120000', '20070122130000', '20070122140000', '20070122150000', '20070122160000', '20070122170000']
Assumed V8 Flexpart
Using readgrid from FortFlex
60 40 1 [0] 0 0 33 1
20070121090000
20070121100000
20070121110000
20070121120000
20070121130000
20070121140000
20070121150000
20070121160000
20070121170000
20070121180000
20070121190000
20070121200000
20070121210000
20070121220000
20070121230000
20070122000000
20070122010000
20070122020000
20070122030000
20070122040000
20070122050000
20070122060000
20070122070000
20070122080000
20070122090000
20070122100000
20070122110000
20070122120000
20070122130000
20070122140000
20070122150000
20070122160000
20070122170000
[0]

At which point, reflexible will run through all the releasetimes and
calculate the cumulative sensitivity so that retroplumes may be calculated.

Note the shapes of the data returned when running backward simulations
different:

In [154]: bw_fd = bwH.FD[(0, '20070121090000')]

In [155]: c = bwH.C[(0,0)]

In [156]: bw_fd.shape
Out[156]: (60, 40, 1, 1, 1)

In [157]: c.shape
Out[157]: (60, 40, 1)

Adding Trajectories

I use the read_trajectories() function to read the trajectories.txt
file and get the trajectories from the run output directory.:

T = rf.read_trajectories(H)

Note, that the only required parameter is the Header “H”, this
provides all the metadata for the function to read the
trajectories. This is a function that accepts simply the “H” instance
or a path to a trajectories file.

Now we can see how we might batch process a backward run and create
total column plots as well as add the trajectory information to the
plots. The following lines plot the data sets using the
plot_totalcolumn(), plot_trajectory(), and
plot_footprint().

Warning

There is a lot of reliance on the mapping module in the plot_routines. If you
have problems, see the mapping.py file. Or the mapping
docstrings. Documentation of this module is presently incomplete but I
am working on it.

In order to reuse figures which is much faster when working with the basemap
module, I create a “None” objects for passing the figure instances around:

TC = None

After that we loop over the keys (s=species, and k=rel_i) of the H.C
attribute we created by calling fill_backward. Note, I named this
attribute C for “Cumulative”. In each iteration, for a new
combination of s,k we pull the data object out of the dictionary. The
“data” object is returned from the function readgridV8() and has
some attributes that we can use later in conjunction with the
plot_totalcolumn() function and for saving and naming the
figures. See for example the following lines:

for s, k in H.C:
 data = H.C[(s, k)]
 TC = rf.plot_totalcolumn(H, data, map_region='Europe', FIGURE=TC)
 TC = rf.plot_trajectory(H, T, k, FIGURE=TC)
 filename = '%s_tc_%s.png' % (data.species, data.timestamp)
 TC.fig.savefig(filename)

This will create filenames based on the data metadata and save the
figure to the path defined by filename. You should now have several
images looking like this:

[image: _images/sample_totalcolumn.png]

The next step is the use the source and learn more about the
functionality of the module. I highly recommend the Ipython [http::/ipython.scipy.org] interpreter and use of the Tab key to
explore the modules methods.

Enjoy!

The reflexible API

	Release

	1.0

	Date

	Jun 01, 2018

	Author

	John F. Burkhart

	Author

	Francesc Alted

The mapping module

A brief description of the module

The mapping module is a helper function to the reflexible
module. Primarily it is designed to perform a few tasks relating to
using the matplotlib Basemap [http://matplotlib.sourceforge.net/basemap/api/basemap_api.html#module-mpl_toolkits.basemap]
module. I haven’t confirmed whether how I pass the figures around or
not is a good idea, and would welcome suggestions.

Warning

This module is not fully prepared for public use. There are a lot of
custom functions, not written in a generic sense. Use with caution.

Purpose

The purpose of this module is to ease create some basic mapping routines using
the basemap module. These are called directly from the reflexible for
example in the plot_sensitivity() routine. The core idea is that a
“FIGURE” object is created using the get_FIGURE() function which has some
key attributes. In general, this is transparent to the user, just intialize
a FIG object as NONE, then pass it to the functions with the FIGURE argument
set to your ‘FIG’ object.:

> FIG = None
> FIG = mp.plot_function(data,FIGURE=FIG)
>

The ‘FIG’ object can then be passed around and reused saving time and
resources. In general, the FIGURE object has the following attributes:

	attribute / key

	description

	fig

	A fig object, use
plt.figure(FIG.fig.number) to make
it active

	m

	A basemap instance for the plot

	ax

	The primary axis instance

	indices

	See the get_FIGURE() which
describes the indices.

Regions

Another commonly used paradigm is the passing of a ‘map_region’ keyword to the
functions. Regions are defined manually at present. You’ll have to edit the
mapping.py and specifically, the map_regions(). Following the
instructions for the Basemap [http://matplotlib.sourceforge.net/basemap/api/basemap_api.html#module-mpl_toolkits.basemap]
toolkit you can define your own unique region. See other regions as examples.

Warning

This is a module in active development, and there are no guarantees for backward
compatability. Constructive input is sought, but don’t complain if something breaks!

The mapping API

	Release

	1.0

	Date

	Jun 01, 2018

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_images/sample_totalcolumn.png
Total Column Sensitivity: AIRTRACER

Release Start: 2010-06-01 06:00:00, Release End: 2010-06-01 09:00:00

=
senstiiy attude
emigd))
3500
s3es00
27es00 1=
0°N
Laess 000
a6es03 o0
330403
00
S
Loes03
200
810402
1500
w2
s0°N
1500
2
2 200
asen
a0

(' Max Value: 1.1e+04 ns mkg-1
Release Z1: 100.00, Z2: 100.00 (m.a.s.l.)

B sE 10°€ 15°€ 20°E 25 30°E 35°E

_static/basic_screenshot.png
ampledoc v1.0 documentation »

Table Of Contents Welcome to sampledoc’s

e documentation!

In nd tabl

This Page Contents:

Show Source

Quick seard Indices and tables

L Jocol « Index
ch terms or a module, « Module Index

« Search Page

sampledoc v1.0 documentation »

opyright 2009, JDH, Created usin

_static/sample_totalcolumn.png
Total Column Sensitivity: AIRTRACER

Release Start: 2010-06-01 06:00:00, Release End: 2010-06-01 09:00:00

=
senstiiy attude
emigd))
3500
s3es00
27es00 1=
0°N
Laess 000
a6es03 o0
330403
00
S
Loes03
200
810402
1500
w2
s0°N
1500
2
2 200
asen
a0

(' Max Value: 1.1e+04 ns mkg-1
Release Z1: 100.00, Z2: 100.00 (m.a.s.l.)

B sE 10°€ 15°€ 20°E 25 30°E 35°E

nav.xhtml

 Table of Contents

 		
 Welcome to Reflexible’s documentation!

 		
 Introduction

 		
 A brief description of the package

 		
 Purpose

 		
 Getting reflexible

 		
 Build and test

 		
 Installation

 		
 Quick install

 		
 Getting started

 		
 A quick overview of FLEXPART data

 		
 Example data

 		
 Converting FLEXPART output to netCDF4 format

 		
 Reading data out of a FLEXPART run

 		
 Basic reflexible functionality

 		
 Working with rflexible in depth

 		
 Data Containers: H.FD and H.C

 		
 Working with Backward Simulations

 		
 Adding Trajectories

 		
 The reflexible API

 		
 The mapping module

 		
 A brief description of the module

 		
 Purpose

 		
 Regions

 		
 Warning

 		
 The mapping API

_static/up.png

_static/sample_totalcolumn2.png
Total Column Sensitivity: AIRTRACER

Release Start: 2010-06-01 03:!

:00, Release End: 2010-06-01 06:00:00

=

senstiiy
(nembgd)

s3es00

27es00

0°N

Laess

a6es03

330403

S

Loes03

810402

s0°N

2

pravss

asen

a0

Max Value: Le+04 ns m kg-1
Release Z1: 100.00, Z2: 100.00 (m.a.s.\)M'AZ

0w 15w 1w sw o SE 10°€ 15°€ 20 25 30°E 35°E

_static/up-pressed.png

